The Infrastructure Backbone of AI: Power, Water, Space, and the Role of Hyperscalers

Introduction

Artificial Intelligence (AI) is advancing at an unprecedented pace. Breakthroughs in large language models, generative systems, robotics, and agentic architectures are driving massive adoption across industries. But beneath the algorithms, APIs, and hype cycles lies a hard truth: AI growth is inseparably tied to physical infrastructure. Power grids, water supplies, land, and hyperscaler data centers form the invisible backbone of AI’s progress. Without careful planning, these tangible requirements could become bottlenecks that slow innovation.

This post examines what infrastructure is required in the short, mid, and long term to sustain AI’s growth, with an emphasis on utilities and hyperscaler strategy.

Hyperscalers

First, lets define what a hyerscaler is to understand their impact on AI and their overall role in infrastructure demands.

Hyperscalers are the world’s largest cloud and infrastructure providers—companies such as Amazon Web Services (AWS), Microsoft Azure, Google Cloud, and Meta—that operate at a scale few organizations can match. Their defining characteristic is the ability to provision computing, storage, and networking resources at near-infinite scale through globally distributed data centers. In the context of Artificial Intelligence, hyperscalers serve as the critical enablers of growth by offering the sheer volume of computational capacity needed to train and deploy advanced AI models. Training frontier models such as large language models requires thousands of GPUs or specialized AI accelerators running in parallel, sustained power delivery, and advanced cooling—all of which hyperscalers are uniquely positioned to provide. Their economies of scale allow them to continuously invest in custom silicon (e.g., Google TPUs, AWS Trainium, Azure Maia) and state-of-the-art infrastructure that dramatically lowers the cost per unit of AI compute, making advanced AI development accessible not only to themselves but also to enterprises, startups, and researchers who rent capacity from these platforms.

In addition to compute, hyperscalers play a strategic role in shaping the AI ecosystem itself. They provide managed AI services—ranging from pre-trained models and APIs to MLOps pipelines and deployment environments—that accelerate adoption across industries. More importantly, hyperscalers are increasingly acting as ecosystem coordinators, forging partnerships with chipmakers, governments, and enterprises to secure power, water, and land resources needed to keep AI growth uninterrupted. Their scale allows them to absorb infrastructure risk (such as grid instability or water scarcity) and distribute workloads across global regions to maintain resilience. Without hyperscalers, the barrier to entry for frontier AI development would be insurmountable for most organizations, as few could independently finance the billions in capital expenditures required for AI-grade infrastructure. In this sense, hyperscalers are not just service providers but the industrial backbone of the AI revolution—delivering both the physical infrastructure and the strategic coordination necessary for the technology to advance.


1. Short-Term Requirements (0–3 Years)

Power

AI model training runs—especially for large language models—consume megawatts of electricity at a single site. Training GPT-4 reportedly used thousands of GPUs running continuously for weeks. In the short term:

  • Co-location with renewable sources (solar, wind, hydro) is essential to offset rising demand.
  • Grid resilience must be enhanced; data centers cannot afford outages during multi-week training runs.
  • Utilities and AI companies are negotiating power purchase agreements (PPAs) to lock in dedicated capacity.

Water

AI data centers use water for cooling. A single hyperscaler facility can consume millions of gallons per day. In the near term:

  • Expect direct air cooling and liquid cooling innovations to reduce strain.
  • Regions facing water scarcity (e.g., U.S. Southwest) will see increased pushback, forcing siting decisions to favor water-rich geographies.

Space

The demand for GPU clusters means hyperscalers need:

  • Warehouse-scale buildings with high ceilings, robust HVAC, and reinforced floors.
  • Strategic land acquisition near transmission lines, fiber routes, and renewable generation.

Example

Google recently announced water-positive initiatives in Oregon to address public concern while simultaneously expanding compute capacity. Similarly, Microsoft is piloting immersion cooling tanks in Arizona to reduce water draw.


2. Mid-Term Requirements (3–7 Years)

Power

By mid-decade, demand for AI compute could exceed entire national grids (estimates show AI workloads may consume as much power as the Netherlands by 2030). Mid-term strategies include:

  • On-site generation (small modular reactors, large-scale solar farms).
  • Energy storage solutions (grid-scale batteries to handle peak training sessions).
  • Power load orchestration—training workloads shifted geographically to balance global demand.

Water

The focus will shift to circular water systems:

  • Closed-loop cooling with minimal water loss.
  • Advanced filtration to reuse wastewater.
  • Heat exchange systems where waste heat is repurposed into district heating (common in Nordic countries).

Space

Scaling requires more than adding buildings:

  • Specialized AI campuses spanning hundreds of acres with redundant utilities.
  • Underground and offshore facilities could emerge for thermal and land efficiency.
  • Governments will zone new “AI industrial parks” to support expansion, much like they did for semiconductor fabs.

Example

Amazon Web Services (AWS) is investing heavily in Northern Virginia, not just with more data centers but by partnering with Dominion Energy to build new renewable capacity. This signals a co-investment model between hyperscalers and utilities.


3. Long-Term Requirements (7+ Years)

Power

At scale, AI will push humanity toward entirely new energy paradigms:

  • Nuclear fusion (if commercialized) may be required to fuel exascale and zettascale training clusters.
  • Global grid interconnection—shifting compute to “follow the sun” where renewable generation is active.
  • AI-optimized energy routing, where AI models manage their own energy demand in real time.

Water

  • Water use will likely become politically regulated. AI will need to transition away from freshwater entirely, using desalination-powered cooling in coastal hubs.
  • Cryogenic cooling or non-water-based methods (liquid metals, advanced refrigerants) could replace water as the medium.

Space

  • Expect the rise of mega-scale AI cities: entire urban ecosystems designed around compute, robotics, and autonomous infrastructure.
  • Off-planet infrastructure—lunar or orbital data processing facilities—may become feasible by the 2040s, reducing Earth’s ecological load.

Example

NVIDIA and TSMC are already discussing future demand that will require not just new fabs but new national infrastructure commitments. Long-term AI growth will resemble the scale of the interstate highway system or space programs.


The Role of Hyperscalers

Hyperscalers (AWS, Microsoft Azure, Google Cloud, Meta, and others) are the central orchestrators of this infrastructure challenge. They are uniquely positioned because:

  • They control global networks of data centers across multiple jurisdictions.
  • They negotiate direct agreements with governments to secure power and water access.
  • They are investing in custom chips (TPUs, Trainium, Gaudi) to improve compute per watt, reducing overall infrastructure stress.

Their strategies include:

  • Geographic diversification: building in regions with abundant hydro (Quebec), cheap nuclear (France), or geothermal (Iceland).
  • Sustainability pledges: Microsoft aims to be carbon negative and water positive by 2030, a commitment tied directly to AI growth.
  • Shared ecosystems: Hyperscalers are opening AI supercomputing clusters to enterprises and researchers, distributing the benefits while consolidating infrastructure demand.

Why This Matters

AI’s future is not constrained by algorithms—it’s constrained by infrastructure reality. If the industry underestimates these requirements:

  • Power shortages could stall training of frontier models.
  • Water conflicts could cause public backlash and regulatory crackdowns.
  • Space limitations could delay deployment of critical capacity.

Conversely, proactive strategy—led by hyperscalers but supported by utilities, regulators, and innovators—will ensure uninterrupted growth.


Conclusion

The infrastructure needs of AI are as tangible as steel, water, and electricity. In the short term, hyperscalers must expand responsibly with local resources. In the mid-term, systemic innovation in cooling, storage, and energy balance will define competitiveness. In the long term, humanity may need to reimagine energy, water, and space itself to support AI’s exponential trajectory.

The lesson is simple but urgent: without foundational infrastructure, AI’s promise cannot be realized. The winners in the next wave of AI will not only master algorithms, but also the industrial, ecological, and geopolitical dimensions of its growth.

This topic has become extremely important as AI demand continues unabated and yet the resources needed are limited. We will continue in a series of posts to add more clarity to this topic and see if there is a common vision to allow innovations in AI to proceed, yet not at the detriment of our natural resources.

We discuss this topic in depth on (Spotify)

Shadow, Code, and Controversy: How Mossad Evolved—and Why Artificial Intelligence Is Its Newest Force-Multiplier

Mossad 101: Mandate, Structure, and Mythos

Created on December 13, 1949 at the urging of Reuven Shiloah, Israel’s founding Prime-Minister-level intelligence adviser, the Ha-Mossad le-Modiʿin ule-Tafkidim Meyuḥadim (“Institute for Intelligence and Special Operations”) was designed to knit together foreign intelligence collection, covert action, and counter-terrorism under a single civilian authority. From the outset Mossad reported directly to the prime minister—an unusual arrangement that preserved agility but limited formal oversight. en.wikipedia.org


From Pioneer Days to Global Reach (1950s-1970s)

  • Operation Garibaldi (1960) – The audacious abduction of Nazi war criminal Adolf Eichmann from Buenos Aires showcased Mossad’s early tradecraft—weeks of low-tech surveillance, forged travel documents, and an El Al aircraft repurposed as an extraction platform. wwv.yadvashem.orgtime.com
  • Six-Day War Intelligence (1967) – Signals intercepts and deep-cover assets provided the IDF with Arab order-of-battle details, shaping Israel’s pre-emptive strategy.
  • Operation Wrath of God (1970-1988) – Following the Munich massacre, Mossad waged a decades-long campaign against Black September operatives—generating both praise for deterrence and criticism for collateral casualties and mistaken identity killings. spyscape.com
  • Entebbe (1976) – Mossad dossiers on Ugandan airport layouts and hostage demographics underpinned the IDF’s storied rescue, fusing HUMINT and early satellite imagery. idf.il

Mossad & the CIA: Shadow Partners in a Complicated Alliance

1 | Foundations and First Big Win (1950s-1960s)

  • Early information barter. In the 1950s Israel supplied raw HUMINT on Soviet weapons proliferation to Langley, while the CIA provided satellite imagery that helped Tel Aviv map Arab air defenses; no formal treaty was ever signed, keeping both sides deniable.
  • Operation Diamond (1966). Mossad persuaded Iraqi pilot Munir Redfa to land his brand-new MiG-21 in Israel. Within days the aircraft was quietly flown to the Nevada Test Site, where the CIA and USAF ran “Project HAVE DOUGHNUT,” giving American pilots their first look at the MiG’s radar and flight envelope—knowledge later credited with saving lives over Vietnam. jewishvirtuallibrary.orgjewishpress.com

Take-away: The MiG caper set the template: Mossad delivers hard-to-get assets; the CIA supplies global logistics and test infrastructure.


2 | Cold-War Humanitarianism and Proxy Logistics (1970s-1980s)

OperationYearJoint ObjectiveControversyCivil or Strategic Upshot
Operation Moses1984Air-lift ~8,000 Ethiopian Jews from Sudan to IsraelExposure forced an early shutdown and left ~1,000 behindFirst large-scale CIA-Mossad humanitarian mission; became a model for later disaster-relief air bridges en.wikipedia.orgmainejewishmuseum.org
Operation Cyclone (support to Afghan Mujahideen)1981-89Funnel Soviet-bloc arms and cash to anti-Soviet fightersLater blowback: some recipients morphed into jihadist networksIsraeli-captured AK-47s and RPGs moved via CIA–ISI channels, giving Washington plausible deniability en.wikipedia.org
Operation Tipped Kettle1983-84Transfer PLO-captured weapons to Nicaraguan ContrasPrecursor to Iran-Contra scandalHighlighted how the two services could cooperate even when formal U.S. law forbade direct aid en.wikipedia.org

3 | Trust Shaken: Espionage & Legal Landmines

  • Jonathan Pollard Affair (1985). Pollard’s arrest for passing U.S. secrets to an Israeli technical bureau (run by former Mossad officers) triggered a decade-long freeze on some intel flows and forced the CIA to rewrite counter-intelligence protocols. nsarchive.gwu.edu
  • Beirut Car-Bomb Allegations (1985). A House panel found no proof of CIA complicity in a blast that killed 80, yet suspicions of Mossad-linked subcontractors lingered, underscoring the reputational risk of joint covert action. cia.gov

4 | Counter-Proliferation Partnership (2000s-2010s)

ProgramModus OperandiStrategic DividendPoints of Contention
Operation Orchard / Outside the Box (2007)Mossad hacked a Syrian official’s laptop; U.S. analysts validated the reactor evidence, and Israeli jets destroyed the site.Averted a potential regional nuclear arms race.CIA initially missed the build-up and later debated legality of a preventive strike. politico.comarmscontrol.org
Stuxnet / Olympic Games (≈2008-10)NSA coders, Mossad field engineers, and CIA operational planners built the first cyber-physical weapon, crippling Iranian centrifuges.Delayed Tehran’s program without air-strikes.Sparked debate over norms for state malware and opened Pandora’s box for copy-cat attacks. en.wikipedia.org

5 | Counter-Terrorism and Targeted Killings

  • Imad Mughniyah (Damascus, 2008). A joint CIA–Mossad cell planted and remotely detonated a precision car bomb, killing Hezbollah’s external-operations chief. U.S. lawyers stretched EO 12333’s assassination ban under a “self-defense” rationale; critics called it perfidy. washingtonpost.com
  • Samir Kuntar (Damascus, 2015). Israel claimed sole credit, but open-source reporting hints at U.S. ISR support—another example of the “gray space” where cooperation thrives when Washington needs distance. haaretz.com

6 | Intelligence for Peace & Civil Stability

  • Oslo-era Security Architecture. After 1993 the CIA trained Palestinian security cadres while Mossad fed real-time threat data, creating today’s layered checkpoint system in the West Bank—praised for reducing terror attacks yet criticized for human-rights costs. merip.org
  • Jordan–Israel Treaty (1994). Joint CIA-Mossad SIGINT on cross-border smuggling reassured Amman that a peace deal would not jeopardize regime security, paving the way for the Wadi Araba signing. brookings.edu
  • Operation Moses (again). Beyond the immediate rescue, the mission became a diplomatic trust-builder among Israel, Sudan, and the U.S., illustrating how clandestine logistics can serve overt humanitarian goals. en.wikipedia.org

7 | AI—The New Glue (2020s-Present)

Where the Cold War relied on barter (a captured jet for satellite photos), the modern relationship trades algorithms and data:

  1. Cross-Platform Face-Trace. A shared U.S.–Israeli model merges commercial, classified, and open-source video feeds to track high-value targets in real time.
  2. Graph-AI “Target Bank.” Mossad’s Habsora ontology engine now plugs into CIA’s Palantir-derived data fabric, shortening find-fix-finish cycles from weeks to hours.
  3. Predictive Logistics. Reinforcement-learning simulators, trained jointly in Nevada and the Negev, optimize exfiltration routes before a team even leaves the safe-house.

8 | Fault Lines to Watch

Strategic QuestionWhy It Matters for Future Research
Oversight of autonomy. Will algorithmic kill-chain recommendations be subject to bipartisan review, or remain in the shadows of executive findings?The IDF’s Habsora (“Gospel”) and Lavender systems show how algorithmic target-generation can compress week-long human analysis into minutes—yet critics note that approval sometimes shrinks to a 20-second rubber-stamp, with civilian-to-combatant casualty ratios widened to 15–20 : 1. The internal debate now gripping Unit 8200 (“Are humans still in the loop or merely on the loop?”) is precisely the scenario U.S. lawmakers flagged when they drafted the 2025 Political Declaration on Responsible Military AI. Comparative research can test whether guard-rails such as mandatory model-explainability, kill-switches, and audit trails genuinely reduce collateral harm, or simply shift liability when things go wrong. washingtonpost.com972mag.com2021-2025.state.gov
Friend-vs-Friend spying. Post-Pollard safeguards are better, but AI-enabled insider theft is cheaper than ever.Jonathan Pollard proved that even close allies can exfiltrate secrets; the same dynamic now plays out in code and data. Large language models fine-tuned on classified corpora become irresistible theft targets, while GPU export-tiers (“AI Diffusion Rule”) mean Israel may court suppliers the U.S. has black-listed. Research is needed on zero-knowledge or trust-but-verify enclaves that let Mossad and CIA query shared models without handing over raw training data—closing the “insider algorithm” loophole exposed by the Pollard precedent. csis.org
Regional AI arms race. As IRGC cyber units and Hezbollah drone cells adopt similar ML pipelines, can joint U.S.–Israeli doctrine deter escalation without permanent shadow war?Iran’s IRGC and Hezbollah drone cells have begun trialing off-the-shelf reinforcement-learning agents; Mossad’s response—remote-piloted micro-swarm interceptors—was previewed during the 2025 Tehran strike plan in which AI-scored targets were hit inside 90 seconds of identification. Escalation ladders can shorten to milliseconds once both sides trust autonomy; modelling those feedback loops requires joint red-team/blue-team testbeds that span cyber, EW, and kinetic domains. washingtonpost.comrusi.org
Algorithmic Bias & Collateral Harm. Hidden proxies in training data can push false-positive rates unacceptably high—especially against specific ethnic or behavioral profiles—making pre-deployment bias audits and causal testing a top research priority.Investigations into Lavender show a 10 % false-positive rate and a design choice to strike militants at home “because it’s easier”—raising classic bias questions (male names, night-time cellphone patterns, etc.). Civil-society audits argue these systems quietly encode ethno-linguistic priors that no Western IRB would permit. Future work must probe whether techniques like counter-factual testing or causal inference can surface hidden proxies before the model hits the battlespace. 972mag.com972mag.com
Data Sovereignty & Privacy of U.S. Persons. With legislation now tying joint R&D funding to verifiable privacy safeguards, differential-privacy budgets, retention limits, and membership-inference tests must be defined and enforced to keep U.S.-person data out of foreign targeting loops.The America–Israel AI Cooperation Act (H.R. 3303, 2025) explicitly conditions R&D funds on “verifiable technical safeguards preventing the ingestion of U.S.-person data.” Yet no public guidance defines what qualifies as sufficient differential-privacy noise budgets or retention periods. Filling that gap—through benchmark datasets, red-team “membership-inference” challenges, and shared compliance metrics—would turn legislative intent into enforceable practice. congress.gov
Governance of Co-Developed Models. Dual-use AI created under civilian grants can be fine-tuned into weapons unless provenance tracking, license clauses, and on-device policy checks restrict downstream retraining and deployment. Joint projects ride civilian channels such as the BIRD Foundation, blurring military–commercial boundaries: a vision-model trained for drone navigation can just as easily steer autonomous loitering munitions. Cross-disciplinary research should map provenance chains (weights, data, fine-tunes) and explore license clauses or on-device policy engines that limit unintended reuse—especially after deployment partners fork or retrain the model outside original oversight. dhs.gov
Why a Research Agenda Now?
  1. Normalization Window Is Narrow. The first operational generation of autonomous clandestine systems is already in the field; norms set in the next 3-5 years will hard-bake into doctrine for decades.
  2. Dual-Use Diffusion Is Accelerating. Consumer-grade GPUs and open-source models reduce the capital cost of nation-state capabilities, widening the actor set faster than export-control regimes can adapt.
  3. Precedent Shapes Law. Court challenges (ICC investigations into Gaza targeting, U.S. FISA debates on model training) will rely on today’s empirical studies to define “reasonable human judgment” tomorrow.
  4. Trust Infrastructure Is Lagging. Technologies such as verifiable compute, federated fine-tuning, and AI provenance watermarking exist—but lack battle-tested reference implementations compatible with Mossad-CIA speed requirements.

For scholars, technologists, and policy teams, each fault-line opens a vein of questions that bridge computer science, international law, and security studies. Quantitative audits, normative frameworks, and even tabletop simulations could all feed the evidence-base needed before the next joint operation moves one step closer to full autonomy.

The Mossad-CIA alliance oscillates between indispensable partnership and latent distrust. Its most controversial moments—from Pollard to Stuxnet—often coincide with breakthroughs that arguably averted wider wars or humanitarian disasters. Understanding this duality is essential for any future discussion on topics such as algorithmic oversight, counter-AI measures, or the ethics of autonomous lethal action—each of which deserves its own deep-dive post.

9 | Technological Pivot (1980s-2000s)

  • Operation Opera (1981) – Pre-strike intelligence on Iraq’s Osirak reactor, including sabotage of French-Iraqi supply chains and clandestine monitoring of nuclear scientists, illustrated Mossad’s expanding SIGINT toolkit. en.wikipedia.org
  • Jonathan Pollard Affair (1985) – The conviction of a U.S. Navy analyst spying for Lakam, an offshoot of Israeli intelligence, chilled cooperation with Washington for a decade.
  • Stuxnet (≈2007-2010) – Widely attributed to a CIA-Mossad partnership, the worm exploited Siemens PLC zero-days to disrupt Iranian centrifuges, inaugurating cyber-kinetic warfare. spectrum.ieee.org

10 | High-Profile Actions in the Digital Age (2010s-2020s)

  • Dubai Passport Scandal (2010) – The assassination of Hamas commander Mahmoud al-Mabhouh—executed with forged EU and Australian passports—prompted diplomatic expulsions and raised biometric-era questions about tradecraft. theguardian.comtheguardian.com
  • Targeted Killings of Iranian Nuclear Scientists (2010-2020) – Remote-controlled weapons and AI-assisted surveillance culminated in the 2020 hit on Mohsen Fakhrizadeh using a satellite-linked, computerized machine gun. timesofisrael.com
  • Tehran Nuclear Archive Raid (2018) – Agents extracted ½-ton of documents overnight, relying on meticulous route-planning, thermal-imaging drones, and rapid on-site digitization. ndtv.com

11 | Controversies—From Plausible to Outlandish

ThemeCore AllegationsStrategic RationaleOngoing Debate
Extrajudicial killingsIran, Lebanon, EuropeDeterrence vs. rule-of-lawLegality under int’l norms
Passport forgeriesDubai 2010, New Zealand 2004Operational coverDiplomatic fallout, trust erosion
Cyber disinformationDeepfake campaigns in Iran-Hezbollah theaterPsychological opsAttribution challenges
“False-flag” rumorsGlobal conspiracy theories (e.g., 9/11)Largely unsubstantiatedImpact on public perception

12 | AI Enters the Picture: 2015-Present

Investment Pipeline. Mossad launched Libertad Ventures in 2017 to fund early-stage startups in computer-vision, natural-language processing, and quantum-resistant cryptography; the fund offers equity-free grants in exchange for a non-exclusive operational license. libertad.gov.ilfinder.startupnationcentral.org

Flagship Capabilities (publicly reported or credibly leaked):

  1. Cross-border Face-Trace – integration with civilian camera grids and commercial datasets for real-time pattern-of-life analysis. theguardian.com
  2. Graph-AI “Target Bank” – an ontology engine (nick-named Habsora) that fuses HUMINT cables, social media, and telecom intercepts into kill-chain recommendations—reportedly used against Hezbollah and Hamas. arabcenterdc.orgtheguardian.com
  3. Predictive Logistics – reinforcement-learning models optimize exfiltration routes and safe-house provisioning in denied regions, as hinted during the June 2025 Iran strike plan that paired smuggled drones with AI-driven target scoring. timesofisrael.comeuronews.com
  4. Autonomous Counter-Drone Nets – collaborative work with Unit 8200 on adversarial-ML defense swarms; details remain classified but align with Israel’s broader AI-artillery initiatives. time.com

Why AI Matters Now

  • Data Deluge: Modern SIGINT generates petabytes; machine learning sifts noise from signal in minutes, not months.
  • Distributed Ops: Small teams leverage AI copilots to rehearse missions in synthetic environments before boots hit the ground.
  • Cost of Error: While AI can reduce collateral damage through precision, algorithmic bias or spoofed inputs (deepfakes, poisoned data) may amplify risks.

13 | Looking Forward—Questions for the Next Deep Dive

  • Governance: How will a traditionally secretive service build guard-rails around autonomous decision-making?
  • HUMINT vs. Machine Insight: Does AI erode classical tradecraft or simply raise the bar for human agents?
  • Regional AI Arms Race: What happens as adversaries—from Iran’s IRGC cyber units to Hezbollah’s drone cells—field their own ML pipelines?
  • International Law: Could algorithmic targeting redefine the legal threshold for “imminent threat”?

Conclusion

From Eichmann’s capture with little more than false passports to algorithmically prioritized strike lists, Mossad’s arc mirrors the evolution of twentieth- and twenty-first-century intelligence tradecraft. Artificial intelligence is not replacing human spies; it is radicalizing their tempo, reach, and precision. Whether that shift enhances security or magnifies moral hazards will depend on oversight mechanisms that have yet to be stress-tested. For strategists and technologists alike, Mossad’s embrace of AI offers a live laboratory—one that raises profound questions for future blog explorations on ethics, counter-AI measures, and the geopolitical tech race.

You can also find the authors discussing this topic on (Spotify).