The Coming AI Credit Crunch: Datacenters, Debt, and the Signals Wall Street Is Starting to Price In

Introduction

Artificial intelligence may be the most powerful technology of the century—but behind the demos, the breakthroughs, and the trillion-dollar valuations, a very different story is unfolding in the credit markets. CDS traders, structured finance desks, and risk analysts have quietly begun hedging against a scenario the broader industry refuses to contemplate: that the AI boom may be running ahead of its cash flows, its customers, and its capacity to sustain the massive debt fueling its datacenter expansion. The Oracle–OpenAI megadeals, trillion-dollar infrastructure plans, and unprecedented borrowing across the sector may represent the future—or the early architecture of a credit bubble that will only be obvious in hindsight. As equity markets celebrate the AI revolution, the people paid to price risk are asking a far more sobering question: What if the AI boom is not underpriced opportunity, but overleveraged optimism?

Over the last few months, we’ve seen a sharp rise in credit default swap (CDS) activity tied to large tech names funding massive AI data center expansions. Trading volume in CDS linked to some hyperscalers has surged, and the cost of protection on Oracle’s debt has more than doubled since early fall, as banks and asset managers hedge their exposure to AI-linked credit risk. Bloomberg

At the same time, deals like Oracle’s reported $300B+ cloud contract with OpenAI and OpenAI’s broader trillion-dollar infrastructure commitments have become emblematic of the question hanging over the entire sector:

Are we watching the early signs of an AI credit bubble, or just the normal stress of funding a once-in-a-generation infrastructure build-out?

This post takes a hard, finance-literate look at that question—through the lens of datacenter debt, CDS pricing, and the gap between AI revenue stories and today’s cash flows.


1. Credit Default Swaps: The Market’s Geiger Counter for Risk

A quick refresher: CDS are insurance contracts on debt. The buyer pays a premium; the seller pays out if the underlying borrower defaults or restructures. In 2008, CDS became infamous as synthetic ways to bet on mortgage credit collapsing.

In a normal environment:

  • Tight CDS spreads ≈ markets view default risk as low
  • Widening CDS spreads ≈ rising concern about leverage, cash flow, or concentration risk

The recent spike in CDS pricing and volume around certain AI-exposed firms—especially Oracle—is telling:

  • The cost of CDS protection on Oracle has more than doubled since September.
  • Trading volume in Oracle CDS reached roughly $4.2B over a six-week period, driven largely by banks hedging their loan and bond exposure. Bloomberg

This doesn’t mean markets are predicting imminent default. It does mean AI-related leverage has become large enough that sophisticated players are no longer comfortable being naked long.

In other words: the credit market is now pricing an AI downside scenario as non-trivial.


2. The Oracle–OpenAI Megadeal: Transformational or Overextended?

The flashpoint is Oracle’s partnership with OpenAI.

Public reporting suggests a multi-hundred-billion-dollar cloud infrastructure deal, often cited around $300B over several years, positioning Oracle Cloud Infrastructure (OCI) as a key pillar of OpenAI’s long-term compute strategy. CIO+1

In parallel, OpenAI, Oracle and partners like SoftBank and MGX have rolled the “Stargate” concept into a massive U.S. data-center platform:

  • OpenAI, Oracle, and SoftBank have collectively announced five new U.S. data center sites within the Stargate program.
  • Together with Abilene and other projects, Stargate is targeting ~7 GW of capacity and over $400B in investment over three years. OpenAI
  • Separate analyses estimate OpenAI has committed to $1.15T in hardware and cloud infrastructure spend from 2025–2035 across Oracle, Microsoft, Broadcom, Nvidia, AMD, AWS, and CoreWeave. Tomasz Tunguz

These numbers are staggering even by hyperscaler standards.

From Oracle’s perspective, the deal is a once-in-a-lifetime chance to leapfrog from “ERP/database incumbent” into the top tier of cloud and AI infrastructure providers. CIO+1

From a credit perspective, it’s something else: a highly concentrated, multi-hundred-billion-dollar bet on a small number of counterparties and a still-forming market.

Moody’s has already flagged Oracle’s AI contracts—especially with OpenAI—as a material source of counterparty risk and leverage pressure, warning that Oracle’s debt could grow faster than EBITDA, potentially pushing leverage to ~4x and keeping free cash flow negative for an extended period. Reuters

That’s exactly the kind of language that makes CDS desks sharpen their pencils.


3. How the AI Datacenter Boom Is Being Funded: Debt, Everywhere

This isn’t just about Oracle. Across the ecosystem, AI infrastructure is increasingly funded with debt:

  • Data center debt issuance has reportedly more than doubled, with roughly $25B in AI-related data center bonds in a recent period and projections of $2.9T in cumulative AI-related data center capex between 2025–2028, about half of it reliant on external financing. The Economic Times
  • Oracle is estimated by some analysts to need ~$100B in new borrowing over four years to support AI-driven datacenter build-outs. Channel Futures
  • Oracle has also tapped banks for a mix of $38B in loans and $18B in bond issuance in recent financing waves. Yahoo Finance+1
  • Meta reportedly issued around $30B in financing for a single Louisiana AI data center campus. Yahoo Finance

Simultaneously, OpenAI’s infrastructure ambitions are escalating:

  • The Stargate program alone is described as a $500B+ project consuming up to 10 GW of power, more than the current energy usage of New York City. Business Insider
  • OpenAI has been reported as needing around $400B in financing in the near term to keep these plans on track and has already signed contracts that sum to roughly $1T in 2025 alone, including with Oracle. Ed Zitron’s Where’s Your Ed At+1

Layer on top of that the broader AI capex curve: annual AI data center spending forecast to rise from $315B in 2024 to nearly $1.1T by 2028. The Economic Times

This is not an incremental technology refresh. It’s a credit-driven, multi-trillion-dollar restructuring of global compute and power infrastructure.

The core concern: are the corresponding revenue streams being projected with commensurate realism?


4. CDS as a Real-Time Referendum on AI Revenue Assumptions

CDS traders don’t care about AI narrative—they care about cash-flow coverage and downside scenarios.

Recent signals:

  • The cost of CDS on Oracle’s bonds has surged, effectively doubling since September, as banks and money managers buy protection. Bloomberg
  • Trading volumes in Oracle CDS have climbed into multi-billion-dollar territory over short windows, unusual for a company historically viewed as a relatively stable, investment-grade software vendor. Bloomberg

What are they worried about?

  1. Concentration Risk
    Oracle’s AI cloud future is heavily tied to a small number of mega contracts—notably OpenAI. If even one of those counterparties slows consumption, renegotiates, or fails to ramp as expected, the revenue side of Oracle’s AI capex story can wobble quickly.
  2. Timing Mismatch
    Debt service is fixed; AI demand is not.
    Datacenters must be financed and built years before they are fully utilized. A delay in AI monetization—either at OpenAI or among Oracle’s broader enterprise AI customer base—still leaves Oracle servicing large, inflexible liabilities.
  3. Macro Sensitivity
    If economic growth slows, enterprises might pull back on AI experimentation and cloud migration, potentially flattening the growth curve Oracle and others are currently underwriting.

CDS spreads are telling us: credit markets see non-zero probability that AI revenue ramps will fall short of the most optimistic scenarios.


5. Are AI Revenue Projections Outrunning Reality?

The bull case says:
These are long-dated, capacity-style deals. AI demand will eventually fill every rack; cloud AI revenue will justify today’s capex.

The skeptic’s view surfaces several friction points:

  1. OpenAI’s Monetization vs. Burn Rate
    • OpenAI reportedly spent $6.7B on R&D in the first half of 2025, with the majority historically going to experimental training runs rather than production models. Ed Zitron’s Where’s Your Ed At Parallel commentary suggests OpenAI needs hundreds of billions in additional funding in short order to sustain its infrastructure strategy. Ed Zitron’s Where’s Your Ed At
    While product revenue is growing, it’s not yet obvious that it can service trillion-scale hardware commitments without continued external capital.
  2. Enterprise AI Adoption Is Still Shallow
    Most enterprises remain stuck in pilot purgatory: small proof-of-concepts, modest copilots, limited workflow redesign. The gap between “we’re experimenting with AI” and “AI drives 20–30% of our margin expansion” is still wide.
  3. Model Efficiency Is Improving Fast
    If smaller, more efficient models close the performance gap with frontier models, demand for maximal compute may underperform expectations. That would pressure utilization assumptions baked into multi-gigawatt campuses and decade-long hardware contracts.
  4. Regulation & Trust
    Safety, privacy, and sector-specific regulation (especially in finance, healthcare, public sector) may slow high-margin, high-scale AI deployments, further delaying returns.

Taken together, this looks familiar: optimistic top-line projections backed by debt-financed capacity, with adoption and unit economics still in flux.

That’s exactly the kind of mismatch that fuels bubble narratives.


6. Theory: Is This a Classic Minsky Moment in the Making?

Hyman Minsky’s Financial Instability Hypothesis outlines a familiar pattern:

  1. Displacement – A new technology or regime shift (the Internet; now AI).
  2. Boom – Rising investment, easy credit, and growing optimism.
  3. Euphoria – Leverage increases; investors extrapolate high growth far into the future.
  4. Profit Taking – Smart money starts hedging or exiting.
  5. Panic – A shock (macro, regulatory, technological) reveals fragility; credit tightens rapidly.

Where are we in that cycle?

  • Displacement and Boom are clearly behind us.
  • The euphoria phase looks concentrated in:
    • trillion-dollar AI infrastructure narratives
    • multi-hundred-billion datacenter plans
    • funding forecasts that assume near-frictionless adoption
  • The profit-taking phase may be starting—not via equity selling, but via:
    • CDS buying
    • spread widening
    • stricter credit underwriting for AI-exposed borrowers

From a Minsky lens, the CDS market’s behavior looks exactly like sophisticated participants quietly de-risking while the public narrative stays bullish.

That doesn’t guarantee panic. But it does raise a question:
If AI infrastructure build-outs stumble, where does the stress show up first—equity, debt, or both?


7. Counterpoint: This Might Be Railroads, Not Subprime

There is a credible argument that today’s AI debt binge, while risky, is fundamentally different from 2008-style toxic leverage:

  • These projects fund real, productive assets—datacenters, power infrastructure, chips—rather than synthetic mortgage instruments.
  • Even if AI demand underperforms, much of this capacity can be repurposed for:
    • traditional cloud workloads
    • high-performance computing
    • scientific simulation
    • media and gaming workloads

Historically, large infrastructure bubbles (e.g., railroads, telecom fiber) left behind valuable physical networks, even after investors in specific securities were wiped out.

Similarly, AI infrastructure may outlast the most aggressive revenue assumptions:

  • Oracle’s OCI investments improve its position in non-AI cloud as well. The Motley Fool+1
  • Power grid upgrades and new energy contracts have value far beyond AI alone. Bloomberg+1

In this framing, the “AI bubble” might hurt capital providers, but still accelerate broader digital and energy infrastructure for decades.


8. So Is the AI Bubble Real—or Rooted in Uncertainty?

A mature, evidence-based view has to hold two ideas at once:

  1. Yes, there are clear bubble dynamics in parts of the AI stack.
    • Datacenter capex and debt are growing at extraordinary rates. The Economic Times+1
    • Oracle’s CDS and Moody’s commentary show real concern around concentration risk and leverage. Bloomberg+1
    • OpenAI’s hardware commitments and funding needs are unprecedented for a private company with a still-evolving business model. Tomasz Tunguz+1
  2. No, this is not a pure replay of 2008 or 2000.
    • Infrastructure assets are real and broadly useful.
    • AI is already delivering tangible value in many production settings, even if not yet at economy-wide scale.
    • The biggest risks look concentrated (Oracle, key AI labs, certain data center REITs and lenders), not systemic across the entire financial system—at least for now.

A Practical Decision Framework for the Reader

To form your own view on the AI bubble question, ask:

  1. Revenue vs. Debt:
    Does the company’s contracted and realistic revenue support its AI-related debt load under conservative utilization and pricing assumptions?
  2. Concentration Risk:
    How dependent is the business on one or two AI counterparties or a single class of model?
  3. Reusability of Assets:
    If AI demand flattens, can its datacenters, power agreements, and hardware be repurposed for other workloads?
  4. Market Signals:
    Are CDS spreads widening? Are ratings agencies flagging leverage? Are banks increasingly hedging exposure?
  5. Adoption Reality vs. Narrative:
    Do enterprise customers show real, scaled AI adoption, or still mostly pilots, experimentation, and “AI tourism”?

9. Closing Thought: Bubble or Not, Credit Is Now the Real Story

Equity markets tell you what investors hope will happen.
The CDS market tells you what they’re afraid might happen.

Right now, credit markets are signaling that AI’s infrastructure bets are big enough, and leveraged enough, that the downside can’t be ignored.

Whether you conclude that we’re in an AI bubble—or just at the messy financing stage of a transformational technology—depends on how you weigh:

  • Trillion-dollar infrastructure commitments vs. real adoption
  • Physical asset durability vs. concentration risk
  • Long-term productivity gains vs. short-term overbuild

But one thing is increasingly clear:
If the AI era does end in a crisis, it won’t start with a model failure.
It will start with a credit event.


We discuss this topic in more detail on (Spotify)

Further reading on AI credit risk and data center financing

Reuters

Moody’s flags risk in Oracle’s $300 billion of recently signed AI contracts

Sep 17, 2025

theverge.com

Sam Altman’s Stargate is science fiction

Jan 31, 2025

Business Insider

OpenAI’s Stargate project will cost $500 billion and will require enough energy to power a whole city

29 days ago

Is There an AI Bubble Forming – Or Durable Super-Cycle?

Introduction

Artificial intelligence has become the defining capital theme of this decade – not just in technology, but in macroeconomics, geopolitics, and industrial policy. The world’s largest corporations are investing at a rate not seen since the early days of the internet, while governments are channeling billions into chip fabrication, data centers, and energy infrastructure to secure their place in the AI value chain. This convergence of public subsidy, private ambition, and rapid technical evolution has led analysts to ask a critical question: are we witnessing the birth of a durable technological super-cycle, or the inflation of a modern AI bubble? What follows is a data-grounded exploration of both possibilities – how governments, hyperscalers, and AI firms are investing in each other, how those capital flows are reshaping global markets, and what signals investors should watch to determine whether this boom is sustainable or speculative.

Recent Commentary Making News

  • Government capital (grants, tax credits, and potentially equity stakes) is accelerating AI supply chains, especially semiconductors and power infrastructure. That lowers hurdle rates but can also distort price signals if demand lags. Reuters+2Reuters+2
  • Corporate capex + cross-investments are at historic highs (hyperscalers, model labs, chipmakers), with new mega-deals in data centers and long-dated chip supply. This can look “bubble-ish,” but much of it targets hard assets with measurable cash-costs and potential operating leverage. Reuters+2Reuters+2
  • Bubble case: valuations + concentration risk, debt-financed spending, power and supply-chain bottlenecks, and uncertain near-term ROI. Reuters+2Yahoo Finance+2
  • No-bubble case: rising earnings from AI leaders, multi-year backlog in chips & data centers, and credible productivity/efficiency uplifts beginning to show in early adopters. Reuters+2Business Insider+2

1) The public sector is now a direct capital allocator to AI infrastructure

  • U.S. CHIPS & Science Act: ~$53B in incentives over five years (≈$39B for fabs, ≈$13B for R&D/workforce) plus a 25% investment tax credit for fab equipment started before 2027. This is classic industrial policy aimed at upstream resilience that AI depends on. OECD
  • Policy evolution toward equity: U.S. officials have considered taking non-voting equity stakes in chipmakers in exchange for CHIPS grants—shifting government from grants toward balance-sheet exposure. Whether one applauds or worries about that, it’s a material change in risk-sharing and price discovery. Reuters+1
  • Power & grid as the new bottleneck: DOE’s Speed to Power initiative explicitly targets multi-GW projects to meet AI/data-center demand; GRIP adds $10.5B to grid resilience and flexibility. That’s government money and convening power aimed at the non-silicon side of AI economics. The Department of Energy’s Energy.gov+2Federal Register+2
  • Europe: The EU Chips Act and state-aid approvals (e.g., Germany’s subsidy packages for TSMC and Intel) show similar public-private leverage onshore. Reuters+1

Implication: Subsidies and public credit reduce WACC for critical assets (fabs, packaging, grid, data centers). That can support a durable super-cycle. It can also mask overbuild risk if end-demand underdelivers.


2) How companies are financing each other — and each other’s customers

  • Hyperscaler capex super-cycle: Analyst tallies point to $300–$400B+ annualized run-rates across Big Tech & peers for AI-tied infrastructure in 2025, with momentum into 2026–27. theCUBE Research+1
  • Strategic/vertical deals:
    • Amazon ↔ Anthropic (up to $4B), embedding model access into AWS Bedrock and compute consumption. About Amazon
    • Microsoft ↔ OpenAI: revenue-share and compute alignment continue under a new MOU; reporting suggests revenue-share stepping down toward decade’s end—altering cashflows and risk. The Official Microsoft Blog+1
    • NVIDIA ↔ ecosystem: aggressive strategic investing (direct + NVentures) into models, tools, even energy, tightening its demand flywheel. Crunchbase News+1
    • Chip supply commitments: hyperscalers are locking multi-year GPU supply, and foundry/packaging capacity (TSMC CoWoS) is a coordinating constraint that disciplines overbuild for now. Reuters+1
  • Infra M&A & consortiums: A BlackRock/Microsoft/NVIDIA (and others) consortium agreed to acquire Aligned Data Centers for $40B, signaling long-duration capital chasing AI-ready power and land banks. Reuters
  • Direct chip supply partnerships: e.g., Microsoft sourcing ~200,000 NVIDIA AI chips with partners—evidence of corporate-to-corporate market-making outside simple spot buys. Reuters

Implication: The sector’s not just “speculators bidding memes.” It’s hard-asset contracting + strategic equity + revenue-sharing across tiers. That dampens some bubble dynamics—but can also interlink balance sheets, raising systemic risk if a single tier stumbles.


3) Why a bubble could be forming (watch these pressure points)

  1. Capex outrunning near-term cash returns: Investors warn that unchecked spend by the hyperscalers (and partners) may pressure FCF if monetization lags. Street scenarios now contemplate $500B annual AI capex by 2027—a heroic curve. Reuters
  2. Debt as a growing fuel: AI-adjacent issuers have already printed >$140B in 2025 corporate credit issuance, surpassing 2024 totals—good for liquidity, risky if rates stay high or revenues slip. Yahoo Finance
  3. Concentration risk: Market cap gains are heavily clustered in a handful of firms; if earnings miss, there are few “safe” places in cap-weighted indices. The Guardian
  4. Physical constraints: Packaging (CoWoS), grid interconnects, and siting (water, permitting) are non-trivial. Delays or policy reversals could deflate expectations fast. Reuters+1
  5. Policy & geopolitics: Export controls (e.g., China/H100, A100) and shifting industrial policy (including equity models) add non-market risk premia to the stack. Reuters+1

4) Why it may not be a bubble (the durable super-cycle case)

  1. Earnings & order books: Upstream suppliers like TSMC are printing record profits on AI demand; that’s realized, not just narrative. Reuters
  2. Hard-asset backing: A large share of spend is in long-lived, revenue-producing infrastructure (fabs, power, data centers), not ephemeral eyeballs. Recent $40B data-center M&A underscores institutional belief in durable cash yields. Reuters
  3. Early productivity signals: Large adopters report tangible efficiency wins (e.g., ~20% dev-productivity improvements), hinting at operating leverage that can justify spend as tools mature. The Financial Brand
  4. Sell-side macro views: Some houses (e.g., Goldman/Morgan Stanley) argue today’s valuations are below classic bubble extremes and that AI revenues (esp. software) can begin to self-fund by ~2028 if deployment curves hold. Axios+1

5) Government money: stabilizer or accelerant?

  • When grants/tax credits pull forward capacity (fabs, packaging, grid), they lower unit costs and speed learning curves—anti-bubble if demand is real. OECD
  • If policy extends to equity stakes, government becomes a co-risk-bearer. That can stabilize strategic supply or encourage moral hazard and overcapacity. Either way, the macro beta of AI increases because policy risk becomes embedded in returns. Reuters+1

6) What to watch next (leading indicators for practitioners and investors)

  • Power lead times: Interconnect queue velocity and DOE actions under Speed to Power; project-finance closings for multi-GW campuses. If grid timelines slip, revenue ramps slip. The Department of Energy’s Energy.gov
  • Packaging & foundry tightness: Utilization and cycle-times in CoWoS and 2.5D/3D stacks; watch TSMC’s guidance and any signs of order deferrals. Reuters
  • Contracting structure: More take-or-pay compute contracts or prepayments? More infra consortium deals (private credit, sovereigns, asset managers)? Signals of discipline vs. land-grab. Reuters
  • Unit economics at application layer: Gross margin expansion in AI-native SaaS and in “AI features” of incumbents; payback windows for copilots/agents moving from pilot to fleet. (Sell-side work suggests software is where margins land if infra constraints ease.) Business Insider
  • Policy trajectory: Final shapes of subsidies, and any equity-for-grants programs; EU state-aid cadence; export-control drift. These can materially reprice risk. Reuters+1

7) Bottom line

  • We don’t have a classic, purely narrative bubble (yet): too much of the spend is in earning assets and capacity that’s already monetizing in upstream suppliers and cloud run-rates. Reuters
  • We could tip into bubble dynamics if capex continues to outpace monetization, if debt funding climbs faster than cash returns, or if power/packaging bottlenecks push out paybacks while policy support prolongs overbuild. Reuters+2Yahoo Finance+2
  • For operators and investors with advanced familiarity in AI and markets, the actionable stance is scenario discipline: underwrite projects to realistic utilization, incorporate policy/energy risk, and favor structures that share risk (capacity reservations, indexed pricing, rev-share) across chips–cloud–model–app layers.

Recent AI investment headlines

Meta commits $1.5 billion for AI data center in Texas

Reuters

Meta commits $1.5 billion for AI data center in Texas

BlackRock, Nvidia-backed group strikes $40 billion AI data center deal

Reuters

BlackRock, Nvidia-backed group strikes $40 billion AI data center deal

Morgan Stanley says the colossal AI spending spree could pay for itself by 2028

Business Insider

Morgan Stanley says the colossal AI spending spree could pay for itself by 2028

Investors on guard for risks that could derail the AI gravy train

Reuters

Investors on guard for risks that could derail the AI gravy train

We discuss this topic and others on (Spotify).