Generative AI Coding Tools: The Blessing and the Curse

Introduction

Artificial intelligence (AI) has long been touted as a game-changing technology, and nowhere is this more apparent than in the realm of software development. Generative AI coding tools, a subset of AI software development tools, have brought about new dimensions in code creation and maintenance. This blog post aims to delve into the intricate world of generative AI coding tools, discussing their pros and cons, the impacts on efficiency and technical debt, and strategies for their effective implementation.

What Are Generative AI Coding Tools?

Generative AI coding tools leverage machine learning algorithms to produce code, usually from natural language input. Developers can provide high-level descriptions or specific instructions, and the AI tool can generate the corresponding code. Tools like OpenAI’s Codex and GitHub’s Copilot are prime examples.

Pros and Cons of Generative AI Coding Tools

Pros

1. Efficiency and Speed:

Generative AI tools can significantly increase productivity. By handling routine tasks, such tools free up developers to focus on complex issues. They can churn out blocks of code quickly, thereby speeding up the development process.

2. Reducing the Entry Barrier:

AI coding tools democratize software development by reducing the entry barrier for non-expert users. Novice developers or even domain experts with no coding experience can generate code snippets using natural language, facilitating cross-functional cooperation.

3. Bug Reduction:

AI tools, being machine-driven, can significantly reduce human error, leading to fewer bugs and more stable code. An AI code assistant is a type of software tool that uses artificial intelligence (AI) to help developers write and debug code more efficiently. These tools can be used to provide suggestions and recommendations for code improvements, detect and fix errors, and offer real-time feedback as the developer is writing code.

Here are some examples of AI code assistants:

  • Copilot: An all-purpose code assistant that can be used for any programming language
  • Tabnine: An all-language code completion assistant that constantly learns the codes, patterns, and preferences of your team
  • Codeium: A free AI-powered code generation tool that can generate code from natural language comments or previous code snippets
  • AI Code Reviewer: An automated code review tool powered by artificial intelligence that can help developers and software engineers identify potential issues in their code before it goes into production

Cons

1. Quality and Correctness:

Despite the improvements, AI tools can sometimes generate incorrect or inefficient code. Over-reliance on these tools without proper review could lead to software bugs or performance issues.

2. Security Risks:

AI tools could unintentionally introduce security vulnerabilities. If a developer blindly accepts the AI-generated code, they might inadvertently introduce a security loophole.

3. Technical Debt:

Technical debt refers to the cost associated with the extra development work that arises when code that is easy to implement in the short run is used instead of applying the best overall solution. Overreliance on AI-generated code might increase technical debt due to sub-optimal or duplicate code.

Impact on Efficiency and Technical Debt

Generative AI coding tools undoubtedly enhance developer efficiency. They can speed up the coding process, automate boilerplate code, and offer coding suggestions, all leading to faster project completion. However, with these efficiency benefits comes the potential for increased technical debt.

If developers rely heavily on AI-generated code, they may end up with code that works but isn’t optimized or well-structured, thereby increasing maintenance costs down the line. Moreover, the AI could generate “orphan code” – code that’s not used or not linked properly to the rest of the system. Over time, these inefficiencies can accumulate, leading to a significant amount of technical debt.

Strategies for Managing Orphan Code and Technical Debt

Over the past six months, organizations have been employing various strategies to tackle these issues:

1. Code Reviews:

A code review is a software quality assurance activity where one or more people check a program by viewing and reading parts of its source code. Code reviews are methodical assessments of code designed to identify bugs, increase code quality, and help developers learn the source code.

Code reviews are carried out once the coder deems the code to be complete, but before Quality Assurance (QA) review, and before the code is released into the product.

Code reviews are an essential step in the application development process. The QA code review process should include automation testing, detailed code review, and internal QA. Automation testing checks for syntax errors, code listing, etc..

Regular code reviews have been emphasized even more to ensure that the AI-generated code meets quality and performance standards.

2. Regular Refactoring:

Refactoring is the process of improving existing computer code without adding new functionality or changing its external behavior. The goal of refactoring is to improve the internal structure of the code by making many small changes without altering the code’s external behavior.

Refactoring can make the code easier to maintain, extend, integrate, and align with evolving standards. It can also make the code easier to understand, which enables developers to keep complexity under control.

Refactoring is a labor-intensive, ad hoc, and potentially error-prone process. When carried out manually, refactoring is applied directly to the source code.

Organizations are allocating time for regular refactoring, ensuring that the code remains clean and maintainable.

3. Integration with Testing Suites:

Generative AI tools are being integrated with testing suites to automatically verify the correctness and efficiency of the generated code. A solid example of these techniques can be found here (LINK)

4. Continuous Learning:

Generative AI tools are being trained continuously with the latest best practices and patterns, making the generated code more in line with the optimal solutions. While the education programs are popping-up daily, it’s always a good practice to stay ahead of the trends and keep your developers literally on the cutting-edge of AI. (LINK)

Best Strategy for Implementing Generative AI Coding Tools

For an organization just getting into AI, it’s important to strategize the implementation of generative AI coding tools. Here are some recommended steps to ensure a smooth transition and integration:

1. Develop an AI Strategy:

First, determine what you hope to achieve with AI. Set clear objectives aligned with your business goals. This will give your team a clear direction and purpose for integrating AI into your coding practices. This topic has been discussed in previous posts, take a look through the archives for some foundational content.

2. Start Small:

Begin by applying AI to small, non-critical projects. This will allow your team to get familiar with the new tools without risking significant setbacks. Gradually increase the scale and complexity of projects as your confidence in the technology grows.

3. Training:

Invest in training your developers. They need to understand not only how to use the AI tools, but also how to interpret and verify the generated code. This will help ensure the AI tool is used correctly and effectively.

4. Establish Code Review Processes:

Incorporate rigorous code review processes to ensure the quality of the AI-generated code. Remember, AI is a tool and its output should not be trusted blindly.

5. Regular Refactoring:

Refactoring should be a part of your regular development cycle to keep technical debt in check. This is especially important when working with AI coding tools, as the risk of orphan code and other inefficiencies is higher.

6. Leverage AI for Testing:

Generative AI tools can also be used to automate testing, another significant part of the development process. This can further boost efficiency and help ensure the reliability of the generated code.

Conclusion

Generative AI coding tools hold tremendous potential to revolutionize software development. However, they must be used judiciously to avoid pitfalls such as increased technical debt. By adopting the right strategies, organizations can leverage these tools to their advantage while maintaining the quality and integrity of their code. As with all powerful tools, the key lies in understanding their strengths, limitations, and proper usage.

Unknown's avatar

Author: Michael S. De Lio

A Management Consultant with over 35 years experience in the CRM, CX and MDM space. Working across multiple disciplines, domains and industries. Currently leveraging the advantages, and disadvantages of artificial intelligence (AI) in everyday life.

2 thoughts on “Generative AI Coding Tools: The Blessing and the Curse”

    1. Thank you for the read and I appreciate the question.

      As a new offering, I’m encouraged that Stability AI is lowering the barrier to new/junior programmers entering the space. As with any of the current models available, if they remain siloed because of higher technical skills being necessary, then adoption becomes a challenge. There are many new entrants into the AI space and all of them should be considering user experience as well as overall functionality and performance.

      While I haven’t explored the offering myself, I hope to get some hands on in the near future.

      Liked by 1 person

Leave a reply to Wicked Sciences Cancel reply